
Gene technologies in weed management: a technical
feasibility analysis
Nagalingam Kumaran1,6, Anupma Choudhary1,6,
Mathieu Legros2,5, Andy W Sheppard3, Luke G Barrett2,5,
Donald M Gardiner4 and S Raghu5

Available online at www.sciencedirect.com

ScienceDirect
With the advent of new genetic technologies such as gene

silencing and gene drive, efforts to develop additional

management tools for weed management is gaining significant

momentum. These technologies promise novel ways to

develop sustainable weed control options because gene

silencing can switch-off genes mediating adaptation (e.g.

growth, herbicide resistance), and gene drive can be used to

spread modified traits and to engineer wild populations with

reduced fitness. However, applying gene silencing and/or gene

drive is expected to be inherently complex as their application

is constrained by several methodological and technological

difficulties. In this review we explore the challenges of these

technologies, and discuss strategies and resources accessible

to accelerate the development of gene-tech based tools for

weed management. We also highlight how gene technologies

can be integrated into existing management tactics such as

classical biological control, and their possible interactions.
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Introduction
Despite the ongoing use of gene technologies in plants for

crop improvement, their utility in combating weeds or
Current Opinion in Insect Science 2020, 38:6–14 
invasive plants has received relatively little attention

[1,2]. Broadly, gene technologies can be categorized into

two broad concepts based on their delivery mechanism for

practical applications in weed/pest management: exoge-

nous gene silencing and self-perpetuating gene drive.

Gene silencing can be achieved through topical applica-

tion of double-stranded RNA (dsRNA) which can alter

the target organism to suppress phenotypic traits. For

instance, dsRNA specific to target genes can be devel-

oped and topically applied to silence genes mediating

functional traits (e.g. growth and development pathways,

herbicide resistance) through RNA-interference (RNAi).

Alternatively, gene drives can conceivably be engineered

to spread particular traits (that could be modified through

gene silencing or genome editing) among populations via

distorted segregation. For instance, gene drive could

possibly spread non-lethal genetic modifications among

populations by releasing trait-modified (e.g. herbicide

susceptible) individuals into the wild [1].

Recent advances and access to genetic tools that can

reliably manipulate genes within the plant genome offers

the option of modifying-specific traits in weeds and to

drive those traits among populations to suppress or

replace the entire population. However, gene silencing

and gene drive are inherently complex, and several factors

can affect developing these technologies. Neve [2] has

outlined different gene drive systems and discussed some

of the factors (transformation systems, DNA repair mech-

anism and weed biology) that potentially affect gene

drives in weed management. Our aim is to explore-

specific methodological complexities associated with

gene silencing and gene drive research, and to discuss

plant ecological traits that might affect deployment of

gene technologies in weed management.

We focus initially on challenges associated with gene

silencing and discuss strategies for efficient silencing.

We then summarize challenges associated with gene

drive and provide strategies to circumnavigate those

constraints. In the remainder of the review, we focus

on generic challenges common for both gene silencing

and gene drive, which include lack of genomic and

transcriptomic resources, and discuss risks associated with

gene technologies. Finally, potential interactions, both

positive and negative, of the two technologies with bio-

logical control agents will be briefly discussed.
www.sciencedirect.com
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Gene silencing
Genes can be transcriptionally silenced by genome

imprinting, paramutation, transposons and RNA-directed

DNA methylation [3,4]. However, post-transcriptional

silencing or RNAi through microRNA and small-interfer-

ing RNA (siRNA) has revolutionized gene silencing

attempts because of its precision, efficiency and ability

to be induced exogenously through topical application.

siRNAs especially have been extensively used in crop

improvement and crop protection research [4]. Steps

involved in siRNA-mediated RNAi (Figure 1), major

considerations and strategies for improvement in each

step to adapt to weed management are discussed below.
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Stability and efficiency of dsRNA constructs

The criteria for selecting an siRNA sequence for a dsRNA

construct are summarized in Agrawal et al. [5]. Briefly,

sequences from 50 and 100bp downstream of the start

codon, with 30–70% of GC content, of 21 nt length and

with 50-phosphate and 30-hydroxyl group are efficient.

dsRNA constructs containing hairpin RNAs (hpRNA)

can produce transient silencing of target genes [6], and

these can be made as intron or intron-less, anti-sense and

co-suppression constructs each with varying stability and

efficiency [4,7]. Among these, constructs with introns in the

spacerregionshavebeenfoundtobestableandefficient ina

widerangeofplantspecies [8].Thesevectorsappear tohelp
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align the arms of the hpRNA for duplex formation better

than intron-less hpRNA (Figure 1) [9]. Several intron-

splicing vector systems (e.g. pHANNIBAL, pKANN-

INAL, pHELLSGATE, pANDA, pIPK) are available to

design efficient constructs [10]. These vectors were made

such that they can be readily used to construct dsRNA and

can be delivered into plants.

Delivery mechanisms

Endogenous delivery of dsRNA into plant tissues can be

achievedbyadiversityofmethods includingviral infection,

Agrobacterium infection or direct delivery using gene gun

approaches [7]. Kodama and Komamine [11��] synthesized

detailed protocols for these delivery mechanisms. Several

plant viruses (e.g. Potato virus X, barley stripe mosaic virus)

havebeenusedasvectors forRNAsilencing[12], soaweed-

virus combination capable of carrying siRNA expression

cassettes could be used for delivery. Similarly, plant viruses

used for delivery of cargo molecules in plants in the labora-

tory and completely synthetic virus-like particles that self-

package their own RNA and potentially cargo RNAi mole-

cules could also be modified for RNAi delivery [13,14].

More recently, cell-penetrating peptides and chemical

modification of dsRNA have been found to enhance the

longevity of dsRNA [15,16].

Exogenous/topical application and uptake of dsRNA

into plant cells have been constrained for many years

by lack of effective delivery mechanisms. Multiple

factors affect the efficient uptake of dsRNA by recipient

plant tissues, including the length and concentration of

the dsRNA, environmental conditions, tissue character-

istics and physiological response (e.g. degradation of

dsRNA) of target weeds to exogenous RNA. Uptake

of dsRNA into cells through leaves [17�], roots [18,19]

and flower buds [20] has been achieved in the labora-

tory. Spray-on methods are the most practical technique

for weed management, but spray-induced gene silenc-

ing has only recently been demonstrated in plants

[17�,21�].

Large-scale production of dsRNA

One of the critical considerations to translate the RNAi

effect for field-level weed management would be the

large-scale production of dsRNA. In vitro synthesized

dsRNA constructs are inexpensive to use for laboratory

research, but do not scale economically for levels that

would be required for use of RNAi as herbicides.

Attempts are being made (e.g. viral-based, yeast-based

and bacteriophage-based RNA replication system) to

enable mass production of dsRNA at a cheaper cost

[22,23]. Self-perpetuating viral vectors carrying dsRNA

that can transmit among plants can be engineered to

silence genes (engineered biocontrol agent). However,

the spread of dsRNA among populations will be

impacted by considerations we cover under ‘gene drive’

below.
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Gene drive
Gene drives are selfish genetic elements that advantage

their own transmission through sexual reproduction and

can potentially spread through entire populations [24].

The spread of gene drives through a population is mainly

governed by the relative strength of the drive (i.e. devia-

tion from Mendelian inheritance) compared to any fitness

cost associated with the drive [25]. The spread of modi-

fied traits through a population can occur even in the

presence of a fitness cost to the organism, as individuals

with a gene drive element can produce more gametes and

subsequently more offspring with the ‘drive allele’ than

without it.

Gene drives can occur naturally [26,27��] or can be

engineered as briefly described below (Figure 2). A

variety of engineered drive systems (e.g. meiotic drive,

underdominance and homing endonucleases) have been

described. Among these, homing-based drives are being

developed in several systems given the flexibility with

tools available for genome editing. For example, Engi-

neered Zinc-Finger Nucleases (ZFNs), Transcription

Activator-Like Effector Nucleases (TALENs) and Clus-

tered Regularly Interspaced Palindromic Repeat

(CRISPR)-associated Cas proteins can introduce precise

genome modification [28]. RNA-guided CRISPR-Cas9

has to-date offered greater potential than ZFNs and

TALENs and remain the method of choice for genome

engineering, primarily due to easier construct develop-

ment, effective target recognition, suitability for multi-

plexing which enables simultaneous targeting of multi-

ple genes and the ability to delete large chromosome or

gene clusters [28,29,30�].

We discuss below drive-specific constraints such as drive

efficiency, resistance alleles and repair mechanisms, in

addition to plant ecological traits that may affect the

spread of drive alleles. For gene drives that rely on

endonucleases, key constraints of genome editing also

need to be considered to design effective constructs for

efficient cleavage of target sites and to select appropriate

transformation systems. Strategies to improve genome

editing are discussed at length in literature [31,32] and

are also summarized below.

Gene editing considerations for endonuclease-based

drives

Gene editing of laboratory strains to be released into wild

is affected by guide-RNA (gRNA) design for site selec-

tion, CRISPR-Cas9 construct, transformation system,

delivery mechanisms and off-target editing. Several

computational and web-based tools (e.g. E-CRISPR,

CRISPRscan, CHOPCHOP, CRISPR-PLANT,

CRISPRdirect, Cas-OFFinder, VARSCOT) are available

to assist with scanning genomes, selecting unique targets,

designing and constructing Cas9/gRNA, predicting

gRNA efficiency and off-target editing [33–36]. Among
www.sciencedirect.com
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Figure 2
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Schematic representation of endonuclease gene editing and gene drive workflows. (a) In CRISPR-mediated editing, constructs encoding

sequence-specific Cas nucleases (e.g. Cas9) directed by specific guide RNA (gRNA) generate double-strand breaks (DSBs) at target loci. Then the

DSB is repaired by either non-homologous end joining (NHEJ), which modifies the broken DNA ends and ligates them together, or by homology

directed repair (HDR), which uses an undamaged DNA template to repair DSB. The repair through HDR enables precise genomic manipulations

and can therefore be used to generate targeted gene replacement, knockout, insertion or editing at precise sites within the genome. (b) Such

modified genes can be driven into populations through gene drive. Ideally, alleles conferring negative traits would perpetuate to spread to

subsequent generations until population suppression or replacement of wild plants is achieved.
these, CRISPR-P, CGAT, CRISPR-PLANT and

CRISPR-Local are specifically developed for plants

and can be adapted for weeds [37,38]. There are custom-

ized CRISPR-Cas9 systems (e.g. meristem-specific,

germline-specific, viral-based and DNA-free systems)

and transformation systems (e.g. Agrobacterium-mediated

transformation, particle bombardment) successfully used

in crop plants that could be adapted in related weed

species [32]. Similarly, protospacer adjacent motif

(PAM) next to the 30 end of target sequence, longer

PAM and optimal Cas9/gRNA concentrations are thought

to reduce the risk of off-target mutations [31,39].

Homing efficiency

Bydefinition,asuccessfulgenedrivereliesontheefficiency

of the drive mechanism which, in the case of a nuclease-
www.sciencedirect.com 
based drive, is reliant on the homing efficiency. Cleavage

and homing should occur at appreciable frequencies in

germline, not in somatic cells, for the drive alleles to spread

among populations [40]. In engineered drives, constructs or

cargos cannot impose fitness costs which outweigh the

homing rate. In wild populations, genomic sequence varia-

tion (e.g. polymorphic sequences) may affect the targeting

and cleavage and eventually affect the homing efficiency

[41]soapopulation levelunderstandingofgeneticvariation

at the target sites is essential.

Resistant alleles

Alleles resistant to endonucleases-based gene drives can

emerge through error-prone copying and during double

strand break (DSB) repair [42��]. Resistant alleles result-

ing from these are likely to spread rapidly through
Current Opinion in Insect Science 2020, 38:6–14
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populations because of strong selection to escape the

deleterious effects of the drive [43,44], which in turn

can affect the drive depending on their fitness effects.

Targeting highly conserved sites in genes, genes medi-

ating traits favoured by natural selection, promoters

enabling high germline drive conversion rate and gRNA

multiplexing have been recommended to limit the emer-

gence of resistant alleles [30�,43,45] but this is yet to be

empirically tested [46,47]. In weed management, recur-

rent release of drive alleles may be required to counter-

act and eventually eliminate the emergent resistance

alleles.

Repair mechanisms

Non-homologous end joining (NHEJ) and homology-

directed repair (HDR) are two competitive repair mech-

anisms involved in repairing DSB in DNA [48,49].

NHEJ is thought to be the dominant repair mechanism

in plants and can be more error-prone in plants than in

other organisms [48,49]. HDR is more precise than

NHEJ and is an absolute requirement for functionality

of nuclease-based gene drives [33,35]. Suppression of

NHEJ through gene silencing, inhibitors and enhancers,

enriching cells with HDR alleles and synchronizing

Cas9 delivery with the cell cycle may increase the

frequency of HDR [50]. However, these strategies

are proposed for mammalian cells and hence validation

is required in plants. The relative frequency of HDR or

NHEJ in weeds is not known. However, these processes

are highly conserved in plants [51], and hence knowl-

edge from model/crop plants can be translated into

weeds.

Reproductive biology of weeds

Gene drive is limited by mode of reproduction, with limited

applications in fully self-compatible and asexually repro-

ducing weed species [24]. For example, autogamous spe-

cies (e.g. Polygonum spp., Chenopodium spp., Conyza cana-
densis, Senecio vulgaris, Cirsium vulgare) and apomictic weed

species (e.g. Chondrilla juncea) may not be good targets for

gene drives. Cross-fertilization and self-incompatibility are

common across weed species (e.g. Lupinus arboreus, Cyperus
rotundus, Cynodon dactylon, Eichhornia crassipes) and, in

many cases is essential for reproduction (e.g. Lantana
camara). These modes of reproduction should make such

weeds good targets for control using gene drives.

For the same reasons, in mixed-mating species, higher

rates of outcrossing will be required to promote the spread

of drive alleles [52]. Spread of the drive may be greater in

a fully outcrossing species relative to species with com-

plex and specialized pollination biology that might

impact the outcrossing rate. The relative influence of

other reproductive traits (e.g. dioecy, protandry, proto-

gyny, dichogamy) on outcrossing rates and gene drive

efficiency also needs further elucidation.
Current Opinion in Insect Science 2020, 38:6–14 
Generation time, spatial ecology, fecundity and seed

bank

Drive alleles are predicted to spread faster in weeds with

shorter development times or higher reproductive rates

[2]. Annuals with multiple generations in a year would be

ideal, enabling rapid fixation of traits [2]. Likewise, out-

crossing perennials with incessant reproduction also can

be targeted to limit the emergence of fit progeny. How-

ever, annuals with multiple generations in a year carrying

resistant alleles are also likely to allow for the faster

emergence of drive-resistant alleles.

Regarding spatial distribution, drive alleles may spread

effectively in a monoculture of large populations because

of greater chance of outcrossing with ‘drive’ individuals,

whereas targeted release of drive alleles may be required

for spatially heterogeneous or isolated small populations.

These predictions are difficult to validate under field

conditions because of regulatory restrictions with genetic

technologies, but simulation models can be used to

predict and validate most of these assumptions [53].

Fecundity, propagule pressure and seedbank are also

likely to significantly affect the spread and efficacy of

gene drives. Species with high fecundity, seedling

recruitment and seed dispersal will enable spread of drive

alleles provided the release rate is above the threshold to

cross-fertilize with most of the existing wild individuals.

Likewise, a seedbank will have significant impact on

penetration of the drive alleles in the population. In

species with a short-lived or a moderately sized seedbank,

a few generations may be enough to replace the popula-

tion emerging from the seedbank. However, it can take

more generations for drive alleles to spread in species

with a long-lived seedbank or the frequency of drive

alleles simply may not reach the threshold to achieve

population suppression or replacement [27��]. Hence,

prolific seed producers with poor seedbanks or with poor

seed longevity (e.g. Lychnis alba, Setaria glauca) may be

more suitable targets. Seed dormancy may also affect the

spread of gene drives if seeds with drive alleles become

dormant. In species with seasonal seedling emergence,

the release of the drive allele should be made such that

emergence and reproduction coincide with wild-type

individuals.

Knowledge gaps in the deployment of gene
technologies in weed management
In addition to above considerations specific to RNAi and

gene drive, fundamental gaps in genetic knowledge also

affect the development of gene technologies. The major-

ity of weed species lack high quality genomic resources

(e.g. an annotated genome and transcriptome) which will

be a constraint to develop genetic tools for weed man-

agement. An annotated genome will help identify the

physical location of DNA sequences, coding regions,

noncoding sequences and open reading frames that are
www.sciencedirect.com
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Table 1

Comparison of RNA-interference gene silencing versus gene

drive. For integrated management, it may be possible to inte-
grate RNAi with bioherbicides and gene drive with classical

biocontrol provided there is a synergy, social acceptance and

regulatory framework to achieve this

RNAi Gene-drive

Heritability Non-heritable mostly;

possibly heritable if the

effect is epigenetic

Heritable

Sustainability Augmentative/ repeated

application is necessary

One-offa

Regulatory

concernsb
Low High to very high

Weed targets Possibly in weeds of

crops, and isolated

populations of

environmental weeds

For cropping as well as

for landscape level

management

Difficulty with

achieving

population

suppression

Comparatively easier

with stable dsRNA,

efficient delivery and

repeated applications

Complex - several

factors can affect the

expression of modified

traits in lab adapted

plants versus wild

plants

Delivery

mechanisms

Exogenous application

of dsRNA specific to

genes of interest.

Topical application in

cropping systems is

possible

Release of transgenic

individuals into the wild

Effect of mode of

reproduction of

weed species

Species with all modes

of reproduction

Sexually reproducing

and outcrossing

species

a Dependent on the drive efficiency.
b Varies among countries.
important for gene silencing and to determine specificity

in gene editing [31]. Transcriptome profiles with func-

tionally characterized genes (and traits) will be crucial to

target the genes underlying the trait of interest for both

RNAi- and gene drive-based control strategies. While

using model species can aid in this process, appropriate

plant models are still lacking for important weed taxa. For

homing-based gene drives, transformation systems and

site-specific integration of gene drive modules will also be

critical with the latter being poorly developed even in

model systems [33].

Risk considerations
Unintended consequences of gene drive include spread

of drive to non-target species through inter-specific

hybridization. Hence, the risks with outcrossing species

such as Raphanus raphanistrum and Sorghum halapense, that

have been reported to hybridize with their crop conge-

ners, are very high. In invasive species management, risks

of a drive system altering or suppressing the native range

population of invasive species through intra-specific

hybridization are high especially in drive systems that

are likely to be highly invasive (e.g. CRISPR-based)

[30�,44].

Removing the drive system, or at least the effector gene,

is important in the event of unintended consequences. A

‘reversal drive’ to counteract the first gene drive, a daisy-

chain drive that will not spread indefinitely, a precision

drive targeting a unique trait of a population and an

immunizing drives which block the spread of other gene

drive have been discussed as mitigation strategies

[30�,54], but their feasibility in different contexts has

yet to be established. Marshall & Akbari [55] proposed

that threshold-independent drives that can spread inde-

pendent of their frequency are highly risky compared to

threshold-dependent and self-limiting drives since the

latter only spread when they are released above a critical

frequency and are easier to contain to their target popula-

tions. Risks associated with other gene drives such as

chromosomal rearrangement and engineered underdomi-

nant constructs are lower since they are less likely to

spread to non-target populations. The broader ecological

context in which a gene drive is deployed needs to also be

explicitly considered, as is the risk of the drive spreading

from the deployed range to the native range of the target

organism [1]. Alleles specific to the target population

maybe targeted to avoid the gene drive effect on non-

target (e.g. native range) populations [56].

Risks associated with RNAi silencing are relatively low

compared to gene drive. Potential risks include off-target

silencing of homologues genes in non-target plants and

dissipation of topically applied RNAi into soil and its

possible non-target silencing of functional genes in inter-

acting organisms. Prima facie these risks are like those

posed by existing chemical controls, but RNAi has the
www.sciencedirect.com 
added benefit of (some) sequence specificity. In weed

species for which classical biological control attempts are

in place, the interactions between RNAi application and

the biocontrol agents need to be assessed.

Gene drive or gene silencing
The choice between gene silencing versus gene drive will

be influenced by the features of each of these methods in

the context of the biology of the target organisms

(Table 1). Almost any trait (including those mediated

by housekeeping genes) can be targeted for RNAi. How-

ever, for gene drive, the targeted traits should not reduce

fitness and the individual with gene drive alleles should

be able to reproduce with wild individuals; these features

are important for the modified trait to reach fixation

within the target population. Manipulating herbicide

resistance traits need not reduce fitness. Hence, weeds

can reproduce as normal and inherit drive alleles which

ultimately produces potential for conditional lethality via

herbicide applications. Likewise, a trait that contributes

to weediness (e.g. seed longevity), or reproduction (e.g.

female sterility) can be targeted using gene drive since

such modifications would not be lethal, but still have a

desirable weed management outcome. Generally, gene
Current Opinion in Insect Science 2020, 38:6–14
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drive is more likely to work in species with high out-

crossing rates. Therefore, in highly selfing species RNAi

can be considered. Further, gene drive is more complex

than silencing, and release rate of drive alleles, stability of

the drive alleles in subsequent generations and number of

generations required for the drive allele to spread among

population need to be modelled to engineer a successful

gene drive.

Integrating gene technologies with other existing biocon-

trol options may be possible to maximize the impact of

weed management tactics. For instance, it may be possi-

ble to integrate RNAi with bioherbicides and gene drive

with classical biocontrol. Further, delivery of ‘drive

alleles’ or dsRNA into population might be achieved

through releasing genetically engineered biocontrol

agents. Using insects (as vectors of plant viruses) to

deliver desired traits (integrated into plant viruses) into

plant populations has been proposed already [57]. It is

possible that the aforementioned gene technologies inter-

act antagonistically with existing management tools. For

instance, plants with a gene drive alleles or silenced genes

may indirectly affect the life history traits of biocontrol

agents by rendering the plant nutritionally unsuitable;

such aspects need to be assessed before any integration.

All efforts to integrate genetic technologies with other

forms of biological control need to be made under the

appropriate regulatory frameworks with social acceptance

of such integrative approaches. It would be prudent to

ensure that any attempts at integration do not disrupt the

social license currently utlized by beneficial technologies

like classical biological control.

Conclusions
Gene technologies have significant potential, on their

own or as integrated tools, to assist in the development

of efficient and effective weed management solutions.

Developing such solutions will require us to overcome

various technical challenges (e.g. stability of RNAi con-

struct and Cas9/sgRNA, drive conversion efficiency and

practical applications) to ensure we effectively influence

key weed traits in a manner to mitigate their impacts to

agriculture and the environment. Additional key deci-

sions will include the deployment of the most appropriate

technologies (e.g. gene silencing, gene drives) in different

contexts and against different targets to ensure the apt use

of these approaches. It is important to pay heed to the fact

that development and deployment of gene technologies

are regulated under appropriate legislative frameworks in

different countries and are subject to varying degrees of

intellectual property (IP) considerations (e.g. license

agreements using the Cas9 nuclease exclude use in gene

drives). All this work also needs to be done with appro-

priate levels of public and stakeholder engagement to

ensure that they are developed in a responsible manner

and have the desired levels of social acceptance [58].

Navigating all these aspects to balance the risks, costs and
Current Opinion in Insect Science 2020, 38:6–14 
benefits of these genetic approaches will be crucial to the

safe and sustainable use of these technologies in weed

management.
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