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The spread of drug resistance represents a significant challenge to many

disease control efforts. The evolution of resistance is a complex process influ-

enced by transmission dynamics between hosts as well as infection dynamics

within these hosts. This study aims to investigate how these two processes

combine to impact the evolution of resistance in malaria parasites. We intro-

duce a stochastic modelling framework combining an epidemiological

model of Plasmodium transmission and an explicit within-human infection

model for two competing strains. Immunity, treatment and resistance costs

are included in the within-host model. We show that the spread of resistance

is generally less likely in areas of intense transmission, and therefore of

increased competition between strains, an effect exacerbated when costs of

resistance are higher. We also illustrate how treatment influences the spread

of resistance, with a trade-off between slowing resistance and curbing

disease incidence. We show that treatment coverage has a stronger impact

on disease prevalence, whereas treatment efficacy primarily affects resistance

spread, suggesting that coverage should constitute the primary focus of con-

trol efforts. Finally, we illustrate the importance of feedbacks between

modelling scales. Overall, our results underline the importance of concomi-

tantly modelling the evolution of resistance within and between hosts.
1. Introduction
Antimalarial drugs, along with vector control, are an essential pillar of malaria

control throughout malaria-endemic areas [1]. In the past century, several

pharmaceutical compounds have been promoted as first-line defences against

Plasmodium in a number of large-scale control efforts. Their efficacy, however,

has systematically been compromised after several years of intense usage

owing to the appearance and spread of parasite strains resistant to each of these

drugs [2–4].

The most recent family of drugs recommended by the World Health Organiz-

ation for antimalarial chemotherapies is artemisinin and chemically related

compounds [5]. Wide-scale usage of these drugs (mostly used in combination

therapies) in the past decade has been associated with a sharp decline in malaria

mortality and success in malaria eradication or near-eradication in several

countries [6]. Concerns have, however, arisen following the observation of para-

site strains in southeast Asia that present a significantly slower clearance rate

when treated with several artemisinin-based treatments [7,8]. Given the current

importance of artemisinin-based combination therapies in the worldwide fight

against malaria, the selection and spread of these (at least partially) resistant

strains would have potentially dramatic consequences for malaria control [3].

In order to be able to curb the spread of such resistant strains, the mechanisms

by which these strains are selected, and transmitted in the host and vector
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populations in endemic areas need to be better understood.

Theoretical studies of the evolution of drug resistance exist

across many biological systems and for many infectious dis-

eases, including malaria [9–12]. Given the vector-borne

nature of the disease, and therefore the interactions of three

organisms, parasite, vector and human host, the study of

malaria transmission presents an inherently higher level of

complexity compared with directly transmitted pathogens.

Additionally, endemic malaria transmission is found in a

variety of ecological and epidemiological settings, which con-

sequently represent a large diversity of environments for the

potential selection of resistant parasite strains.

The epidemiological dynamics of malaria, as that of many

infectious diseases, has been the subject of a considerable body

of theoretical work [13–15], spanning a variety of modelling

scales, assumptions and techniques [16,17]. This epidemiologi-

cal framework in itself provided an ideal backdrop for

studies of antimalarial drug resistance, and several models

have investigated the dynamics of antimalarial resistance in

such a context [18–20].

Most such models can and do examine a diversity of

eco-epidemiological settings, such as varying transmission

intensities or treatment options. In many cases, however, the

dynamics within hosts, human or mosquito, are ignored. On

the other hand, some models have specifically aimed to

describe the within-host dynamics of Plasmodium within its

hosts, particularly within its human host [21–27], and its

impact on resistance evolution [18,28].

In the context of this study, we argue that a separate con-

sideration of modelling scales (between- and within-host

dynamics) can impede our understanding of important aspects

of malarial dynamics. In particular, the evolution of resistance

to antimalarial drugs is likely to be significantly impacted by

dynamics occurring at both biological levels, and by any poten-

tial interaction thereof. Under the assumption of pre-existing

susceptible and resistance Plasmodium strains co-circulating in

a given environment, selective pressures acting on resistant

strains will arise at the epidemiological scale, from competition

between strains for transmission among host and vector popu-

lations. At the same time, specific selective pressures will

impact co-circulating strains competing at the within-host

level, particularly within human hosts, as suggested by the fre-

quent co-occurrence of multiple parasite strains within infected

hosts in several (mostly endemic) areas [29,30].

It is therefore expected that disease dynamics and particu-

larly resistance evolution will be impacted in a complex

fashion by the dynamics at both levels. More generally, the

notion that disease dynamics might be influenced by diverse

components operating at different biological and ecological

scales has recently gained recognition [31,32], including in

(but not limited to) the case of mosquito-borne diseases [33].

Accordingly, there has been a growing interest in models that

examine such dynamics across scales [34], and more particularly

in models that disentangle the respective roles of individuals

and populations in pathogen dynamics [35,36]. There is

therefore substantial value in models that combine epide-

miological (between-hosts) and immunological (within-hosts)

scales, although concerns about the potential disadvantages of

additional model complexity have been raised [37].

In that context, we present here a modelling framework

that describes the epidemiology of two competing strains of

Plasmodium transmitted within and between populations

of vectors and hosts. Within this framework, we can study the
dynamics of competing sensitive and resistant strains, placing

the focus of the study on the spread of existing resistance

(rather than the dynamics of resistance emergence). Both the

within-host and the between-host scales are considered. In

this particular study, the former is incorporated as a multi-

strain model of parasite development and host cell infection

within human hosts, and the latter as an epidemiological

model of transmission between human hosts and mosquito

vectors. We simulate disease dynamics at both scales simul-

taneously, with a particular focus on interactions between

scales: how within-host infection impacts transmission events,

and how epidemiological settings affect competition between

parasite strains, notably co-occurrence and competition within

hosts. By simulating the impacts of treatment and costs of resist-

ance, we aim to demonstrate the importance of modelling across

transmission scales and biological processes for theoretical

understanding of drug resistance and, ultimately, applied

strategies of resistance management and disease control.
2. Methods
2.1. Model structure overview
We present in this study a stochastic model describing the trans-

mission and competition of two parasite strains in populations of

human hosts and mosquito vectors. The overall model combines

a between-hosts and a within-host component, which we present

separately in §§2.2 and 2.3. In §2.4, we also describe the functions

that govern the relationship between these two model com-

ponents, by relating the within-host gametocyte numbers to the

effective transmission rate per mosquito bite.

For better readability, each model component can be most

easily described as a deterministic set of ordinary differential

equations, which is what we present below for the between-

hosts and for the within-host model. The final, stochastic

model is then obtained by translating each deterministic com-

ponent into the corresponding stochastic model, using Gillespie

tau-leap algorithms. This process is detailed in §2.5, along with

details of the numerical implementation of this stochastic model.
2.2. Between-hosts model
We follow strain-specific transmission between hosts and vectors

according to a modified SI model for both human hosts and

insect vectors. The dynamics of susceptible hosts (SH), infected

hosts (IH), susceptible vectors (SV) and infected vectors (IV) can

be described by the following equations:

dSH

dt
¼ rIH � a b m

IV

SV þ IV
, ð2:1Þ

dIH

dt
¼ a b m

IV

SV þ IV
� rIH, ð2:2Þ

dSV

dt
¼ d IV � a c

IH

SH þ IH
ð2:3Þ

nd
dIV

dt
¼ a c

IH

SH þ IH
� d IV, ð2:4Þ

where a is the mosquito biting rate, b is the transmission

probability per infectious bite from vector to host, c is the trans-

mission probability per infectious bite from host to vector, d is

the death rate for mosquitoes, r is the recovery rate of infectious

hosts and m is the ratio of mosquitoes to hosts in the simulated

population:

m ¼ SV þ IV

SH þ IH
: ð2:5Þ
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Table 1. List of parameters and default values. Parameters are separately listed for between-hosts and within-host models. Listed default value is the value
used in this study unless otherwise specified. Parameters with subscript i are strain-specific (strain i with i [ f1, 2g, 1 is sensitive, 2 is resistant). When only
one value is provided for strain-specific parameters, the same value was used in this study for both strains. Note, however, that model structure allows for
strain-specific distinct values in future work.

parameter description default reference

between-hosts model

a vector biting rate 0.25 d21 [13], [14]a, [15], [38]

b transmission rate from vector to host 0.3 d21

c transmission rate from host to vector 0.3 d21

d vector death rate 0.12 d21

r host recovery rate 0.01 d21

T extrinsic incubation period 14 d

within-host model

L rate of uninfected erythrocyte production 1 [22]a

mx death rate of uninfected erythrocytes 1/120 d21 [22]a, [39]

my death rate of infected erythrocytes 0.5 d21 [22]a, [39]

ms death rate of free merozoites 1/20 min21 [22]a, [39]

mg death rate of circulating gametocytes 1/16 d21 [22]a, [40]

mI death rate of immune cells 1/20 d21 [22]a

bi infection rate of erythrocytes by free merozoites 0.1 [22]a

hi gametocyte formation rate 0.02 [22]a

ri number of merozoites produced per infected erythrocyte 16 [14]a, [22]a

ki efficacy of immune response against infected erythrocytes 0.05 [22]a

hi efficacy of immune response against free merozoites 0.05 [22]a

li efficacy of immune response against gametocytes 0.05 [22]a

gi immune stimulation by infected erythrocytes 0.1 [22]a

si immune stimulation by free merozoites 0.1 [22]a

li immune stimulation by gametocytes 0.1 [22]a

Q background rate of immune cells production 0.01 [22]a

fi strain-specific cost of resistance (within-host reduction of

merozoites production)

f1 ¼ 0; f2 ¼ 0.01

1i strain-specific treatment efficacy (within-host increase of

infected erythrocytes mortality)

11 ¼ 0.9; 12 ¼ 0

S treatment coverage (among hosts) 0.9
aAnd references therein (refers to key modelling studies; where empirical support for parameter values was lacking, default values in this study were chosen to
match those used in these specific articles).
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We limit this study to short epidemiological time scales

and therefore ignore human demographics and age structure. We

also consider the vector population size to remain constant, with

a birth rate equal to the death rate d. This death rate

applies equally to susceptible and infected vectors (the effective

birth rate is therefore equal to d(SV þ IV), partly simplified in

equation (2.3) with the death rate –dSV). All parameters and their

default values are listed in table 1. Effective transmission rates b
and c are determined by intrahost dynamics, as described in §2.4.

We implement stochastic simulations of host and vector

population dynamics based on this model in a fashion described

in §2.5. In these simulations, infection status is tracked for each

host and vector individually. For each transmission event, the

date and involved parasite strain are recorded, and within the

affected hosts, the parasite dynamics are modelled as described

in §2.3.
2.3. Within-host model
The dynamics of multi-strain infection within the human

host can be described by the following set of equations (equations

(2.6)–(2.10)), adapted from earlier theoretical work [22,24]:

dX
dt
¼ L� mxX �

X
i

biSiX, ð2:6Þ

dYi

dt
¼ biSiX �

1

1� 1i
myYi � hiYi � kiIiYi, ð2:7Þ

dSi

dt
¼ myrið1� fiÞYi � msSi � biSiX � hiIiSi, ð2:8Þ

dGi

dt
¼ hiYi � mgGi � liIiGi ð2:9Þ

and
dIi

dt
¼ ðgiYi þ siSi þ liGi � mIÞIi þQ, ð2:10Þ

http://rsif.royalsocietypublishing.org/
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Figure 1. Gametocyte-dependent transmission probability in a contact
between vector and infected host. The effective transmission probability is
defined by equation (2.11) in the main text, and corresponds to the solid
line in this figure. Two gametocyte-dependent thresholds are defined, g1

and g2. For gametocyte concentration beyond g2 the probability remains at
the value defined in the between-hosts model, b. The dashed line corre-
sponds to the case where w ¼ g1/g2. In this case, there is effectively no
lower threshold to gametocyte-dependent transmission probability. (Online
version in colour.)
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where X represents uninfected erythrocytes in the host and consti-

tutes the resource for which (up to two) parasite strains compete.

Yi, Si and Gi represent infected erythrocytes, free merozoites and

circulating gametocytes, respectively, for parasite strain i (i[f1,

2g). Finally, Ii represents the strain-specific immune component

against strain i. The inclusion of this strain-specific immunity

allows co-infection and co-circulation of parasite strains with

different fitnesses [22]. This immune component is not meant to

represent any particular mechanism of human immunity, but rep-

resents the action of the host immune system as a whole on

circulating parasites of a specific strain.

Uninfected erythrocytes X are produced at a constant rate L,

and die at a rate mX. Erythrocytes are infected by free merozoites

Si of strain i at a rate biSi to produce infected cells Yi. These

infected cells die at a rate my producing in the process ri free mer-

ozoites. Infected erythrocytes can also produce gametocytes at a

rate hi. Free merozoites and gametocytes die at a rate ms and mg,

respectively. All parasite stages are affected by an immune com-

ponent Ii acting against the corresponding strain. Infected

erythrocytes, free merozoites and gametocytes die at rates kiIi,

hiIi and liIi, respectively. Immune compartment Ii is in turn

boosted by this reaction, at respective rates giYi,siSi and liGi.

Immune cells die at a constant rate mI and are produced at a con-

stant rate Q. Treatment is assumed to act on parasite replication

inside erythrocytes. We therefore model the impact of treatment

as an increase in the mortality rate of infected erythrocytes by a

factor (121i)
21, where 1i corresponds therefore to the strain-

specific treatment efficacy. Treatment is modelled as a binary

attribute of an infected host. The probability that an infected

host receives treatment is defined by treatment coverage S, and

the treatment status of a given host remains until the host is

removed from the infected compartment (IH).

Finally, we define strain-specific costs fi, in particular for

addressing costs of resistance. While the precise stage at which

such costs may appear is not well defined, there is evidence

that the growth of the parasite at the erythrocytic stage is affected

[41,42]. We therefore elect to apply these costs to the number ri of

free merozoites produced per infected erythrocyte, which is

therefore scaled by a factor (12fi).

Within-host dynamics of the parasite in the final model are

stochastically simulated based on these equations, as described

in §2.5. Note that, for simplicity, we do not model the intrahost

dynamics within the mosquito vector explicitly. We consider,

instead, a fixed duration T as the incubation period within the

mosquito (known as the extrinsic incubation period). An infected

mosquito is considered infectious (i.e. can potentially infect

susceptible human hosts) only after this incubation period T
has elapsed after that mosquito became infected.

All parameters and their default values are listed in table 1.

2.4. Interface between model components
As the course of infection with multiple strains is followed within

each host, the values of within-host state variables at the time of

contact between host and vector can influence the outcome of

this contact, and therefore impact the occurrence of transmission

events at the between-host scale.

In the case of contact between an infected vector and a host,

the time lapsed since the vector was first infected is checked. If

this time exceeds the extrinsic incubation period T, infection of

the host may occur. The rate of infection is then c as defined

by the between-host model.

In case of contact between a vector and an infected host, the

number of circulating gametocytes G in the host is checked.

There are few studies that explicitly investigate the relationship

between concentration of circulating gametocytes and infectivity

to susceptible vectors. Consequently, the precise form of this

relationship is not well defined. In this study, we have followed
the observations of the most recent and most detailed study

on this topic [43] to define the realized transmission rate b* as

follows (see also figure 1):

if G , g1: b� ¼ G
g1

wb

if g1 , G , g2: b� ¼ wbþ G� g1

g2 � g1
bð1� wÞ

if G . g2: b� ¼ b:

8>>>><
>>>>:

ð2:11Þ

With a low default value of w ¼ 0.1, this corresponds to two

thresholds for transmission: one low threshold g1 under which

transmission rate remains low (increasing linearly from 0 to wb),

one high threshold g2 above which transmission rate is maximal

at b (given by the between-host model) and is not sensitive to

the gametocyte concentration (figure 1). Between the two

thresholds transmission rate increases linearly at a steeper slope,

reproducing the pattern observed in empirical studies [43].

2.5. Numerical implementation
We run stochastic simulations of the full model, including

between-hosts and within-host components of the model. Fixed

numbers of hosts and vectors are individually followed through-

out the simulation (each population retains a constant size,

because human demography is ignored and vector deaths are

compensated by births of susceptible vectors). For each model,

the corresponding differential equations are stochastically simu-

lated following Gillespie’s algorithm with tau-leaping method

[44]. In this framework, multiple similar events (defined in the

respective model descriptions) can occur within the same time

step; in that case the number is drawn from a Poisson distri-

bution with a mean given by the product of the event defined

rate and the actual time step.

The model is implemented in Cþþ. Unless otherwise noted,

simulations use a time-step of 1 h at the between-host level, of 1/

12 h at the within-host level, and consider a population of 10 000

hosts (the vector population is sized according to the value of m).

The resistant strain is introduced after a burn-in running period

of 1 year, at an initial frequency in the host population of 1%, and

the model is then run for a time span of 5 years. At this resolution

and for this stochastic model, our ability to run replications is

inevitably limited by computational constraints. We typically

http://rsif.royalsocietypublishing.org/
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Figure 2. Resistance spread and mosquito to host ratio. Proportion of resist-
ant parasites after 5 years in simulations with resistant parasites introduced
into a sensitive population. Parameters are set at default value as defined in
table 1. Number of hosts: 10 000. Number of vectors: defined by m the
mosquito to host ratio. Average of 30 simulations (+s.e.).
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Figure 3. Multiple infections and mosquito to host ratio. Proportion of mul-
tiple infections in human hosts through 5 years in simulations with resistant
parasites introduced in a sensitive population. Parameters as in figure 2.
Average of 30 simulations (+s.e.).
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choose to run 30 identical simulations (with same parameter

values and same initial conditions) for a given parameter set.
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Figure 4. Interactions between cost of resistance and mosquito to host ratio.
Proportion of resistant parasites after 5 years in simulations with resistant
parasites introduced into a sensitive population. Parameters as in figure 2
except cost of resistance f2 defined for the resistant strains (no cost
f1 ¼ 0 for the sensitive strain). Average of 30 simulations, s.e. not
shown. Surface shading reflects levels on the z-axis (see values on the
colour bar along the z-axis). The cyan line (with circle symbols) marks the
data from figure 2. Contour plot is drawn on the graph floor. (Online version
in colour.)
3. Results
We first focus on the interactions between scales in our model,

and how competition between strains within human hosts can

be influenced by epidemiological dynamics. Different epide-

miological settings are primarily characterized by different

entomological inoculation rates (EIR, the most widely used

metric of transmission intensity, defined as the expected

number of infected bites received by a host in a given period

of time). In our model, we can directly vary this EIR by chan-

ging the value of m, the vector-to-host ratio, which is directly

proportional to EIR. We can therefore also interpret results of

varying m as scenarios with varying EIR.

We find that in high transmission settings, the proportion

of resistant parasites in the simulated population after 5 years

is lower (F ¼ 13.12, p , 0.001, logit-transformed data) than in

low transmission settings (figure 2), although the effect

remains relatively weak with the default value of the cost of

resistance (f2 ¼ 0.01). Interestingly, vector control approaches,

which constitute a major component of the fight against

malaria, aim primarily to reduce the value of this ratio m.

This result would imply that such measures, while efficient

at curbing disease incidence, could have the undesired side

effect of speeding up the spread of pre-existing resistant

parasite strains.

One potential underlying mechanism for this slower

spread of resistance in high transmission areas is the impact

of competition between strains within a host, based on the

assumption that a resistant strain would be less fit than a sen-

sitive strain in the absence of treatment. We illustrate this

impact by confirming that multiple infections (co-circulation

of two distinct strains in a given host) are significantly

more frequent (F ¼ 17.47, p , 0.001, logit-transformed data)

when transmission intensity is higher (figure 3).

If the above explanation is correct, the significance of this

effect should increase with the difference in fitness between

both strains, that is, with the cost of resistance. We show
that this is indeed the case, and that higher costs of resistance

not only impede the spread of resistance as expected, but also

exacerbate the impact of a higher mosquito-to-host ratio and

the difference between high and low transmission settings

(figure 4, variance levels not pictured but quantitatively

comparable to those in figure 3).

We also investigate the impact of treatment on the dynamics

of infection in our simulated populations. As described in §2,

we consider treatment to vary in both its efficacy (within-

host) and its level of coverage (between-hosts). We show that

disease prevalence is lower when efficacy and coverage are

increased (figure 5a), and that resistance levels (sampled after

3 years to better emphasize differences that occur during the

http://rsif.royalsocietypublishing.org/
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ance. Effect of treatment efficacy and treatment coverage (as defined in
the text) after 3 years in simulations with resistant parasites introduced
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values given in table 1. Average of 30 simulations, s.e. not shown. (Online
version in colour.)
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rise of the resistant strain in the population) are higher under the

same conditions (figure 5b). This implies again a trade-off

between disease control and resistance, where a decrease in dis-

ease incidence appears to be systematically associated with

higher levels of resistance among the remaining parasites. Inter-

estingly, the results show that disease prevalence is most

sensitive to treatment coverage, whereas the levels of resistance

are markedly more sensitive to treatment efficacy. This suggests
that at high levels of treatment coverage, the impact on disease

prevalence would be stronger with only a weak impact on

resistance levels (figure 5c), mitigating the undesirable impact

of the above-mentioned trade-off.

A key component of this multi-scale model is the quantitat-

ive interface between these scales, that is, the calculation of an

effective transmission rate between an infectious host and a

naive vector based on the gametocyte concentration circulating

in the human host (equation (2.11)). We define two thresholds

in gametocyte concentration, and both disease prevalence and

proportion of resistant parasites are sensitive to these two

thresholds (figure 6). More precisely, the proportion of resistant

parasites increases when either threshold is raised, whereas

disease prevalence decreases when the high transmission

threshold g2 is raised. Interestingly, disease prevalence appears

to be sensitive only to g2 and not to the low transmission

threshold g1, whereas the fraction of resistant parasites is

shown to be more strongly impacted by the lower threshold g1.

Overall, we show with this model that disease dynamics

depend in a complex fashion on transmission patterns between

hosts as well as parasite infection dynamics within hosts.

http://rsif.royalsocietypublishing.org/
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Classic disease dynamics parameters can therefore not apply to

this model, but need to be considered at each separate scale.

For example, parasite transmission is chiefly governed by

two parameters: the within-host ability of the parasite to repli-

cate and infect new erythrocytes (bi), as well as the between-

hosts ability to transmit from an infected to a susceptible

human host (b). Disease prevalence in the model is positively

correlated with both parameters (figure 7), but there is a clear

interaction between these scales: the impact of within-host

replicative ability is much stronger at high between-host

transmission probabilities. It should be noted that this inter-

action appears to be dependent on our specific, nonlinear

interaction between gametocyte density and effective trans-

mission rate. When this nonlinearity is partly removed by

setting w ¼ g1/g2 (illustrated in figure 1), the interaction

between b and bi appears less pronounced (figure 7, variance

levels not pictured, but quantitatively comparable to previous

scenarios, see figure 3 for example).
4. Discussion
The evolution of drug resistance has been studied in many dis-

ease systems, including P. falciparum malaria. We introduced in

this study a model combining within-host and between-hosts

modelling scales, and we have shown that the dynamics of

two competing strains, sensitive and resistant, depend on

specific assumptions at each of these scales and on interactions

between dynamics across scales. While previous studies have

investigated the epidemiological aspects of resistance, and

some studies have focused on the within-host dynamics of

resistance, the interactions between these biological processes

remain incompletely characterized. The modelling framework
presented in this study, studying malaria dynamics across bio-

logical scales, provides important insights into treatment

practices and disease control, and more generally demonstrates

the value of examining disease dynamics and the evolution of

resistance with consideration for between- and within-hosts

modelling scales.

We have shown that the competition between sensitive

and resistant strains, which occurs primarily within the

human host, directly impacts the spread of resistance at the

population level. Interestingly, there is a clear interaction

between traits of the resistant strain at the within-host level

(cost of resistance) and population-level epidemiological

traits (ratio of vectors to host) in determining the fate of a

resistant strain in a population. In particular, we show that

resistance does not spread as fast in the population in areas

of higher transmission intensity. Other studies have described

an effect in the opposite direction [18,28], and it is likely that

details about assumptions on competition as well as treatment

explain the observed discrepancies. We point out in particular

(i) that by explicitly modelling the within-host dynamics

of different life stages of the parasite, we place a stronger

emphasis on the outcome of competition for erythrocytes,

which is more relevant during the acute phase of the infec-

tion but less so during the transmission phase and (ii) that

by representing treatment as a binary attribute of an infec-

ted individual we ignore potentially important effects of

within-host pharmacodynamics and pharmacokinetics, and

associated strain-specific impacts.

Nevertheless, these results clearly illustrate the importance

of considering a combination of scales in a theoretical study like

this one, and underline the level of complexity involved in pre-

dicting the evolution of resistance in malarial parasites. For

instance, the ratio of vector to hosts is known to vary greatly

across malaria-endemic areas, while the cost of resistance

remains very poorly quantified, particularly for resistance to

artemisinin-based therapies. The sensitivity illustrated in this

study demonstrates, therefore, the importance of gaining

better quantitative understanding of both these aspects of

malaria transmission and infection.

This interaction between scales also provides crucial

insights into the impact of treatment on disease dynamics

and resistance evolution. We have shown that treatment effi-

cacy, considered primarily as the ability to kill parasites in

the blood or in blood cells, and therefore a within-host par-

ameter, and treatment coverage, considered as the probability

for a host to receive treatment, and as such a parameter of

the between-host level, have impacts that interact in a complex

fashion. Interestingly, while the potential negative impacts of

strong disease control on resistance levels have been previously

examined [45], with this multi-level approach we show that

this trade-off operates more or less strongly for different

types of treatment. Treatment coverage and efficacy appear

to be at odds, analogously to previously described effects for

other types of intervention, particularly vaccines [46,47]. In

our results, coverage seems to be the more crucial aspect, as

it strongly impacts disease prevalence while only moderately

favouring the spread of resistance, even at high coverage

levels. This would suggest that, in a hypothetical situation

where improving treatment coverage and efficacy at the same

time would not be feasible, a focus on high treatment coverage

would most benefit disease control, and mitigate to some

extent the undesirable effects of the aforementioned trade-off,

namely the selection for resistant strains.

http://rsif.royalsocietypublishing.org/


rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20160148

8

 on April 13, 2016http://rsif.royalsocietypublishing.org/Downloaded from 
More generally, we observe that the results of this multi-scale

model are substantially impacted by both modelling levels, and

appear sensitive to specific assumptions and parameter values at

each scale. These results, while preliminary, seem to suggest that

none of these biological processes can easily be ignored in mod-

elling studies, particularly when examining issues of drug

resistance evolution. Furthermore, the results emphasize the

importance of processes occurring across scales (e.g. here, com-

petition), and of specific assumptions regarding the interface

between these scales. This highlights not only the importance

of the methodological fringe zone between within- and

between-hosts modelling approaches, but also emphasizes the

crucial epidemiological links between individual infectiousness

and transmission intensity. The results of our model are highly

sensitive to assumptions regarding this specific juncture

(figure 7) in the same way that our overall understanding of

malaria epidemiology and control hangs on those biological

relationships [48].

Methodologically, it should be pointed out that the model

presented here is a fairly complex model with a high number of

parameters. While this approach was chosen for its mechanistic

merits in describing the dynamics of Plasmodium parasites

(particularly within its human host), high dimensionality

poses significant challenges that can potentially offset these

benefits, a classical trade-off for epidemiological and ecological

modelling [37,49].

The most significant challenges concern model parametri-

zation. When empirical studies have provided estimates for

any given parameter in this model, we have based our para-

metrization choices on these studies. Some often-studied

parameters can therefore be set with reasonable levels of confi-

dence. This includes most parameters of the between-hosts

model (although often highly variable between transmission

areas), and within-host parameters such as the gametocyte

production rate hi, their mortality rate mg (the lifespan of game-

tocytes has been empirically measured by several studies), and

the number of merozoites produced by an infected erythrocyte.

Other parameters of within-host model, while not directly mea-

surable, can be inferred from empirically measurable proxies.

This includes, for example, the erythrocyte infection rate b,

and the lifespan of infected erythrocytes (my
21).

Yet many parameters of the within-host model are at pre-

sent not supported by any empirical study, and can therefore

only be parametrized ad hoc in a fashion that supports

reasonable infection dynamics within a given host. This is

primarily the case of parameters pertaining to immune

action against specific parasite stages (hi, ki, li, gi, si and li,).

While the competition between parasite strains in our frame-

work is primarily driven by the availability of uninfected

erythrocytes, the immune component was included in the

model to allow for the frequency-dependent competition

and therefore co-circulation of competing strains. As such,

it is limited to a simplistic impact on parasite dynamics,

and cannot be considered to provide a faithful representation

of the complex interactions existing between host immunity

and Plasmodium dynamics (within and between hosts). The

current modelling framework could however be further

extended to include a more detailed description of host

immunity, particularly with regards to immunity acquisition

through successive infections. This extended model would

further elucidate the potential impacts of immunity on

strain-specific transmission and ultimately on the selection

for resistance.
More generally, even in its current form our model relies

on a number of parameters, and the sensitivity of the results

to each parameter and model component should be further

elucidated. In this study, we have focused on sensitivity to

eco-epidemiological parameters (i.e. between-host model par-

ameters), as well as to those specific elements that define the

interaction between model components. With these results,

we emphasize the importance of considering disease dynamics

across biological scales, which constitutes the central point of

this article. To better characterize the impact of within-host

dynamics in particular, further in-depth sensitivity analyses

will be valuable, and are part of our future plans with this mod-

elling framework. The value of such analyses is further

emphasized by (i) the natural level of variation in several

aspects of the model, whether epidemiological [15,38] or

immunological [24] and (ii) the inherent level of uncertainty

in many aspects of the model, particularly in parameters

describing within-host dynamics and the host immune

response. For these reasons, large-scale sensitivity and uncer-

tainty analyses, although methodologically complex with

high-dimensional models such as this one, will provide further

insights into the respective roles of within- and between-hosts

processes (and their potential interactions) in disease dynamics

and resistance evolution.

At this stage, our modelling framework presents significant

limitations, and is therefore not able to capture and describe the

variety of epidemiological dynamics that Plasmodium falciparum
exhibits in natural populations. In this article, we deliberately

chose simplistic scenarios that allow us to examine the impact

of a few specific parameters, but at the cost of realism when

comparing with specific field situations. In particular, we con-

sider short epidemics where resistance is initially present at

relatively high levels, is completely impervious to treatment

and rises therefore in a short period of time (only a few

years). Another significant limitation of the current framework

is the restriction to two circulating strains, sensitive or resistant.

We ignore at this stage more complicated genetic architectures,

notably the inclusion of multiple resistance loci and the impact

of recombination, which has been shown to have a significant

impact on the evolution of multiple drug resistance [50,51].

We also cannot elucidate in this framework the specific

dynamics of resistance emergence.

In further studies, we aim to extend our modelling frame-

work to consider more elaborate multi-loci and multi-drug

dynamics. Our current framework across scales will be particu-

larly appropriate to study these questions, because mixed

infections within hosts represent a crucial part of these

dynamics. Generally, the rationale for the high-dimensional,

stage-specific parametrization of this model is to set the

stage for more complex and/or realistic studies of malaria

transmission and control (including vector control). In this fra-

mework, however, a better quantitative knowledge of several

key aspects of Plasmodium dynamics, most notably of the host

immune action against various stages of the parasite, is

required.

Informed by such empirical data across biological scales,

we believe that the combined modelling approach presented

in this study will provide an improved framework to further

our understanding of disease dynamics with competing

mixed infections, and the resulting consequences for the

evolution of drug resistance.
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